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The C-matrix and the reality classification of the
representations of the homogeneous Lorentz group: IIL
Irreducible representations of the orthochronous and
homogeneous Lorentz groups

A V Gopala Rao and B § Naraharif

Department of Studles in Physics, University of Mysore, Manasagangotlm Mysore 570 006,
Indla -

Received 21 March 1994, in final form 2 September 1994

Abstract. The bilinear metrics and the C-matrices aénﬁned by the irreducible representations
(ireps) of the orthochronous and the homogeneous Lorentz groups are determined and the irreps
are classified into three reality types. -

1. Introduction

It is well known (see, for example, Gelfand et ol (1963) or Barut (1964)} that the
orthochronous Lorentz group (OLG) is obtained from the orthochronous proper Lorentz group
{oPLG) SO(3, 1) by adding the space-reflection transformation ¢ = diag(—1, —1, —1, 1} and
all possible products of the form sg’, where g’ € SO(3, 1), to SQ(3, 1). Gelfand et al (1963)
have proved the following two theorems which completely determine all the irreps of the
OLG, |

Theorem 1. Any self-conjugate irrep g’ — D(g") of SO(3, 1) (i.e. an irrep for which either
Jjo = 0 or ¢ = () may be used to produce two non-equivalent (mequlvalent) irreps of the
OLG acting in the same space as the irrep g + D(g", as follows

@) g~ D(g) s> +8 sg' > +81D(g) ¥g' € 803, 1)
(ii) g — D(gh s =8 sg' — —8:D(g" Vg’ € SO, 1).

The operator S, representing the space reflection element §, has, in the canonical Gelfand—
Naitnark (GN) basis of the irrep g’ — D(g") of SO(3, 1), the matrix elements}

Si(, m; ') = (=108, 8. O
It is readily checked that S, possesses the following properties:
§,=8=§=8"' 88 =E ' @

where the symbols *, ~ and § denote, respectively, the complex conjugate, the matrix-
transpose and the adjoint (transposed complex conjugate) of the matrix S, and E is a unit
matrix of appropriate dimension.

t Present address: Department of Physics, Government First Grade College, Hassan 573 201, India.
% For notations and conventions regarding the irreps D(Jjo, ¢} of SO(3, 1), see Gopala Rao et al (1994a).
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Theorem 2. The pair of non-equivalent irreps D(jp, ¢} and D(jp, —¢) with neither j, nor
¢ equal to zero (called mutually conjugate irreps of SO(3, 1)), acting in the carrier spaces
B(jo, ¢) and B(jg, —c¢), respectively, may be used to produce an irrep of the OLG acting in
the linear sum space B{jg, ¢) @ B(jp, —c¢) as follows

D(jo.c: &) | 0 ]
0 IDGo —c;g"

0|8
s S8= [S_‘_Ol] sg’ — SD(g") Vg € S0(3, 1).
1

Here, S is the matrix already given in equation (1) and the obvious notation D{jp, ¢; g7
stands for the matrix representative of the element g’ € SO(3, 1) in the D(j, ¢) irrep. (Note
that the two irreps D(jy, €) and D{js, —c) both lead to the same matrix 8; by equation (1);
this would follow from the fact that the two carrier spaces B(jp, ¢) and B(jy, —c) are
essentially the same and, hence, may be completely identified with each other (see also
Srinivasa Rao et al 1983).)

Next, we may recall (Gelfand ef af 1963, Barut 1964) that the homogeneous Lorentz
groupt (HLG) is obtained by adding all products of the form g’ to the OLG, where g’ € OLG
and ¢ is the time reflection element ¢ = diag(l, 1,1, —1}. Thus SO3, 1) C OLG C HLG
and hence elements of the form g, sg, tg, and jg, where j = st = 5 is the total reflection
element and g € SO(3, 1), exhaust the HLG. The identity element ¢ and the three reflections
s, ¢t and j together form a finite abelian group of order 4 called the group of reflections,
characterized by the following group multiplication table:

g’HD(g’)E[ jo#0,c£0

2 2 2

st=ts=j si=js=t ti=jt=s Sf=tt=jr=e 3)
As the group of reflections is a subgroup of the HLG, it is clear that every representation of the
HLG also automatically generates a corresponding representation of the group of reflections.
A representation of the HLG which leads to a unique or single-valued representation of the
group of reflections is called a unique representation (Gelfand et i 1963) of the HLG, and,
in this case, the operator representatives S, T and J of 5, ¢ and j, respectively, commute
with one another. In contrast, there exist representations of the HLG which lead to two-
valued representations for the group of reflections and, consequently, such representations
are called two-valued representations of the HLG (Gelfand er al 1963). In the case of the
two-valued representations of the HLG, one can show (Gelfand ez al 1963) that the operators
S, T and J anti-commute with one another. Gelfand et ol (1963) have shown that all the
unique irreps of the HLG may be obtained by extending the representations of the subgroup
SO(3, 1) as follows].

Theorem 3. Any self-conjugate irrep g’ = D(g") of SO, 1) (see theorem 1) may be used
to produce two non-equivalent unique irreps of the HLG as follows

i) g+ D(g") s> § t S j—E sg’ — 8;D(g")

t Note that Gelfand et al (1963} call the opLG (SO(3, 1)), the OLG and the HLG, respectively, as the proper Lorentz
group, the complete Lorentz group and the general Lorentz group.

1 Note that Gelfand ef al (1963) actually obtain the irreps of the HLG by a process of extension of the irreps of the
subgroup oLG, However, since all the irreps of the oLG, in turn, are obtained as extensions of the representations
of 80(3, 1} from theorems 1 and 2, we have restated theorems 3-6 of Gelfand ef ai (1963) as prescriptions for
obtaining the irreps of the HLG directly from the representations of SO(3. 1).
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tg' > §;D(g") Jjg + D(g") vg' € 803, 1)
(i) g»DiE)  s=+8 t-8 jo-E  sg'+8DE)
g/~ -8  jg— -D(E) Vg eSOGE 1.

Theorem 4. Any pair of non-equivalent mutvally conjugate irreps of SO(3,1) (see
theorem 2) may he used to produce two non-equivalent unigue irreps of the HLG as follows:

" [DGs, e g) | 0
i "= D(g) = 70 - 0
@) frgr—> (g") { 5 o o e g,)] Jo # c#
018
SHSE{ ]
810

t> S jE sg’ v 8D(g") tg’ = SD(g"
je'— D) Vg €SO@, 1.
D{(jo.c: 8"} | 0

0 |D(jo, —c; 2" ]

) g Dig) = [ Jo# 0 c#0

0 S
s s=[ 5]

$; 10
t> -8  jr—E sg’ — SD(g") tg’ — —8SD(g"
jg' — —D(g" ¥g' € SO(3, 1).

The prescriptions for finding the two-valued irreps of the HLG are contained in the following
two theorems (Gelfand ef af 1963).

Theorem 5. Any pair of uon—equivrélent mutoally conjugate irreps of S0(3, 1) (see
theorem 2) may be used to generate a two-valued irrep of the HLG according to the following
prescription

Plhcig) |9 ] B#EO0  ckO

0 iDUn-cg)

0% 0 iS; | —iE 0
SHiSEi[+} [!—):I:TEi[—‘—\] jl—):l:JEi[—!_—]
: S; 10 —-i% 0 0! iE

sg' > £8D(g") 15> £TD()  jg'+> D) Ve € SOG, 1.

g EDE) =% [

Theorem 6.  Any self-conjugate irrep of SO(3, 1) (see theorem 1) may be used to generate
a two-valued irrep of the HLG according to the following prescription

Do, cie)| O ]
0 IDGncg)

S] 0 0 51 0 E
Sl—):I:SE:I:[—‘_—‘] tHiTE:I:[ ] jHiJEi[+]
0 -5 : S:1'0 —El 0

sg’ = £8D(g) tg' > £TD(g" jg > 2dD(g") ¥g' €SO3, 1).

g £D(g) ==+ [ either jo =0 orc=0
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It must be observed that the matrix S, that occurs in theorems 26, is the same as the S,
that occurs in theorem 1, and is given by equation (1). Second, the matrix S that appears
in theorems 2, 4, 5 and 6 can be easily checked to possess all the properties of the matrix
S; quoted in equation (2).

In this context, it may be of some interest to note (see Gelfand e al (1963) pp 300-5)
that the Dirac equation for the electron, which is well known to be covariant under
the decomposable representation [D(%, %) ) D(%, —%)] of SO(3, 1), actually transforms
according to an irrep of the OLG and a two-valued irrep of the HLG.§

2. The reality classification and some special properties of the irreps of the 0LG and
the HLG

‘We now examine the irreps of the OLG and the HLG for a few special properties relating 1o
the bilinear and sesquilinear metrics and C-matrices. For the definition of the C-matrix and
the criteria for reality classification of irreps, we refer to two of our earlier papers, namely,
parts I and IT of this series of three papers on the reality classification of the representations
of the HLG (Gopala Rao et al 1994a,b).

2.1. The case of the irreps of the OLG

Note that although the cases (i} and (ii}, occurring in theorem 1, lead to two non-equivalent
irreps of the OLG, it is not necessary to consider them separately as the properties of the
irreps of the OLG obtained through s > -8, remain valid for the irreps corresponding to
§ = —8; also. Therefore, in what follows, we consider the irreps comresponding to case
(i} only.

Now consider an irrep A of the OLG obtained from the self-conjugate irrep D{jy, ¢) of
SO(3, 1) from theorem 1. Let Gi; be the (unique) bilinear metric {Srinivasa Rao et al 1983)
preserved by the irrep D(jo, ¢). Then it is evidentﬂthat the irrep A of the OLG preserves
a bilinear metric (in fact G itself) if, and only if, $;G;S; = Gy, where 8; is the matrix
representative of the space reflection element s (see theorem 1 and equation (1)). The same
argument applies with regards to the sesquilinear metric and the C-matrix admitted by A.
Thus, the results displayed in table 1 follow. In obtaining the resuits quoted in table 1, we
have made use of the available sesquilinear metrics (see Gelfand et al (1963) pp 201-7), the
bilinear metrics (Srinivasa Rao e ¢/ 1983) and the C-matrices (Gopala Rao et al 1994a,b)
of the irreducible and decomposable representations of SO(3, 1).

Consider next, an irrep A of the OLG which is obtained from a two-component
decomposable representation [D{jp, ¢) @ D(jy, —¢)] from theorem 2. It is evident that
if the operator S in the ftrep A of the OLG, ie.

0|5
o[22

S 10
where S is given by equation (1), preserves any one of the various bilinear metrics (Gopala
Rao et al 1994a) preserved by the decomposable representation [D{ jy, ¢) @ D(jiy, —c)], then
the corresponding irrep A of the OLG also preserves the same bilinear metric. If S does not
preserve any of the bilinear metrics associated with {D{jo, ¢) @ D(jp, —¢)], then A does not
preserve any bilinear metric at all. Precisely the same arguments hold for the sesquilinear

metric and the C-matrix associated with A. Thus, we arrive at the results listed in table 2
for the irreps of the OLG (generated from theorem 2},

7 In the D' notation for the finite-dimensional irreps of SO(3, I}, this would mean that the Dirac equation
transforms according to the D1 @ DOF representation.
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2.2. The case of the unigue irreps of the HLG

Comparing theorems 1 and 3, we observe that precisely the same operators D(g’) and S,
figure in both these theorems and, as such, every properiy (displayed in table 1) possessed
by a certain irrep of the OLG (obtained from theorem 1) is also true of the commesponding
unique irreps of the HLG obtained from theorem 2. Similarly, comparing theorems 2 and 4,
we note that all the properties displayed in table 2 of the irreps of the OLG (obtained from
theorem 2) are also possessed by the corresponding unique irreps of the HLG obtained from
theorem 4.

2.3. The case of the two-valued irreps of the HLG

It is easy to see that if all three operators §, T and J which occur in theorem 5 admit any one
of the various bilinear metrics (Gopala Rao et al 1994b) asgociated with the decomposable
representation A = [D(jg, ¢) ®D(jo, —¢)] in the sense that SGS = TGT = JGJ == G, then
the two-valued representation of HLG obtained from theorem 5 also admits the same bilinear
metric G. Conversely, if these three operators 8, T and J do not admit any of the bilinear
metrics admaitted by the representation A of SO(3, 1), then the corresponding two-valued
irrep of the HLG (cobtained from theorem 5) clearly does not admit any bilinear metric.
Similar arguments hold with regard to the sesquilinear metric and the C-matrix associated
with the two-valued irreps of the HLG obtained from theorem 5. These observations lead
to a number of metric and reality properties of the two-valued irreps of the HLG generated
from theorem 5, and these results are displayed in table 3.

Similar arguments lead us to the properties listed in table 4 for the two-valued irreps of
the HLG, obtained from theorem 6.
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